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A new coupled efficient layerwise higher-order theory is presented for analysis of hybrid piezoelectric composite

plates with the aim of predicting transverse shear stresses directly from the constitutive equations. The theory is

developed by superposing layerwise quadratic and cubic terms on the third-order zigzag approximations of the

existing zigzag theory. The electric potential is assumed to be quadratic across the layers. By satisfying the interface

continuity conditions for each of the two local terms separately and enforcing the conditions on the transverse shear

stresses at layer interfaces and top and bottom surfaces, the number of displacement unknowns is reduced to nine.

Comparisons with the three-dimensional exact solutions reveal that the present theory is a significant improvement

over the existing zigzag theory for elastic and hybrid composite plates. It yields superior results, not only for

transverse shear stresses, but also for other response entities, including the layerwise higher-order variations of in-

plane displacements and nonuniform distribution of deflection under electric potential load.

I. Introduction

L AMINATEDcomposite plates are extensively used as structural
members in aerospace, automotive, and shipbuilding industries

today. Interlaminar transverse stresses are the predominant cause of
failure (through delamination) in these laminated structures. In
recent times, distributed piezoelectric sensors and actuators are
integrated in these laminates to render self-sensing and actuation
capabilities for active vibration control, shape control, noise control,
and health monitoring (sensing) applications. In most cases, these
piezoelectric elements are poled parallel to the applied electric field
(in the thickness direction) and themembrane strains induced in them
by the applied electric potential are used for the actuation (and
conversely sensing), which is known as the extension actuation
mechanism. This, however, induces large interlaminar transverse
shear stresses at the interface between the actuated piezoelectric layer
and the elastic laminate called the substrate, which may lead to
weakening/delamination at the interface, causing drastic reduction in
the actuating/sensing authority of the piezoelectric layer despite
potential structural failure. The accurate prediction of interlaminar
transverse stresses in elastic and piezoelectric laminates through a
two-dimensional (2-D) laminate theory that is efficient, directly
using constitutive equations, is a challenging task before the
researchers. The present work is aimed to address this important
issue.

A recent review of the state-of-the-art of smart structures can be
found in [1]. Analytical three-dimensional (3-D) piezoelasticity
solutions yield an accurate prediction of the interlaminar stresses in
piezoelectric laminated structures, but such solutions are available
only for some specific geometries and boundary conditions [2–4].
Among the available 2-D theories for hybrid plates, the coupled
discrete layer theories (DLTs) [5] considering layerwise linear
variation of displacements and electric potential are the most
accurate, but they suffer from an excessive number of displacement
unknowns in proportion to the number of layers.Moreover, theDLTs
with layerwise linear variation yield constant shear stresses through

each layer and hence require a large number of discrete layers to
obtain the accurate profiles of transverse shear stresses across the
thickness. Coupled first-order shear deformation theory (FSDT) [6–
8], refined third-order theory (TOT) [9,10], and consistent TOT [11]
have been developed, wherein the displacements are assumed to
follow a global (first and higher order) variation across the thick-
ness. These theories violate the slope discontinuity of in-plane
displacements and the continuity of transverse shear stresses at the
layer interfaces, yielding inaccurate global (deflection, in-plane
stresses, etc.) as well as local (transverse stresses) response ofmoder-
ately thick and even thinner laminates. Kapuria [12] andKapuria and
Achary [13] extended the efficient zigzag theory (ZIGT) of elastic
laminated plates [14,15] to the fully coupled electromechanical
response of hybrid piezoelectric plates, wherein the assumptions of
displacements are the same as in the DLTs with additional quadratic
and cubic global variation across thickness for the in-plane dis-
placements and, incorporating nonuniform variation of transverse
displacement, contributed by the electric field. But the number of
displacement variables is reduced to only five, like FSDT and TOT,
by enforcing transverse shear continuity conditions at layer inter-
faces and shear traction free conditions at top and bottom surfaces
exactly. This theory has been found to yield very accurate results for
global static and dynamic response of hybrid plates with highly
inhomogeneous composite as well as sandwich substrates. But, it is
unable to accurately predict the transverse shear stresses directly
from the constitutive equations, which can only be obtained
by integrating the 3-D equations of momentum. The integration,
however, requires computation of higher-order derivatives of dis-
placements, which poses difficulties in the finite element imple-
mentation and is still a great concern. This issue was apparently first
addressed for elastic laminated plates by Li and Liu [16], who
proposed a global–local theory (GLT) wherein local layerwise terms
up to the third order are combined with the global third-order
variations of in-plane displacements using double-superposition
hypothesis. The continuity of the local displacement terms at the
layer interfaces is satisfied in two groups, and conditions on the trans-
verse shear stresses are satisfied to reduce the number of unknown
displacement variables to 11. The theory was shown to predict the
transverse stresses accurately from constitutive equations without
using any postprocessing method. The theory was later generalized
for the mth-order global variation by Zhen and Wanji [17].

In the presentwork, a new fully coupled efficient layerwise higher-
order theory is developed for hybrid plates by adding local second-
and third-order terms to the ZIGTapproximations [12,13] of in-plane
displacements, with the aim of predicting transverse shear stresses
directly from constitutive equations. By satisfying the continuity of
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in-plane displacements at layer interfaces for each of the local terms
separately and enforcing the conditions on transverse shear stresses,
the number of primary displacement variables is reduced to nine. The
electric potential is assumed to follow a quadratic variation across the
piezoelectric layers, unlike the piecewise linear variation assumed in
[12,13]. The accuracy of the theory is assessed in comparison with
the 3-D exact piezoelasticity solutions [4,18] for both elastic and
hybrid simply supported rectangular composite plates. The new
theory differs from the ZIGT [12], not only due to the inclusion of
layerwise higher-order terms in the expansion of in-plane displace-
ments and the higher-order variation of electric potential, but also due
to the adoption of a more general approach in obtaining the final
variations of displacements. The additional displacement and poten-
tial variables lead to additional equations of momentum and charge
balance. Most important, the new theory yields quite an accurate
prediction of transverse shear stresses in elastic as well as hybrid
laminates, which the earlier ZIGT and other theories of the same
efficiency are unable to do.

II. Displacement and Electric Field Approximations

Consider a hybrid piezoelectric rectangular plate (Fig. 1) of
thickness h consisting of L perfectly bonded orthotropic layers with
the midplane chosen as the x–y plane. The plate is loaded trans-
versely on its top and bottom surfaces. Some of its layers are of
orthorhombic piezoelectric material exhibiting class mm2 symmetry
[19] with poling along the thickness direction z. The z coordinate of
the bottom surface of the kth layer from the bottom is denoted as
z� zk�1. The layer in which the reference plane lies, or is at the
bottom of, is denoted as the k0th layer.

Using the usual assumption of negligible transverse normal stress
[�z��z ’ 0�] made in most 2-D theories, the 3-D linear constitutive
equations of piezoelasticity [19,20] reduce to

� � �Q" � �eT3Ez; � � Q̂� � êE
D� êT� � �̂E; Dz � �e3"� ��33Ez (1)
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� and " are the in-plane stress and strain components, respectively; �
and � denote the transverse shearing stress and strain components,

respectively; �Qij, �eij, and ��ij are the reduced elastic stiffnesses,
piezoelectric stress constants, and electric permittivities, respec-
tively; and Ei and Di (i� x, y, and z) denote the electric field and
electric displacement components, respectively.

Let ux, uy, andw be the in-plane and transverse displacements and
� be the electric potential. The strain-displacement and electric field-
electric potential relations for a small strain condition are

"x � ux;x; "y � uy;y; "z �w;z
�yz � uy;z � w;y; �zx � ux;z � w;x �xy � ux;y � uy;x

Ex ���;x; Ey ���;y; Ez ���;z (3)

The subscript comma denotes differentiation. The in-plane electric
fields Ex and Ey may be applied by actuation through segmented
piezoelectric actuator layers and/or induced due to the direct
piezoelectric effect.

The 3-D piezoelasticity solutions [2–4] of piezoelectric plates
poled along the thickness direction have shown that the electric
potential � in a piezoelectric layer follows a nearly quadratic
distribution along the thickness. Accordingly, � is approximated as a

piecewise quadratic between n� points at z� zj� across the thickness
of the laminate:
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j
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q
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where �j�x; y� � ��x; y; zj�� denotes the electric potentials at

piezoelectric layer surfaces/interfaces and �qc�x; y� denotes the

quadratic component of electric potential at z� �zq� � z
q�1
� �=2. The

summation convention is used for repeated indices, with the indices j
and q taking values j� 1; 2; . . . ; n� and q� 1; 2; . . . ; n� � 1.
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(5)

Exact 3-D piezoelasticity solutions [2–4] have also revealed that
the thickness of a piezoelectric layer undergoes change primarily due
to the d33 effect in presence of the electric field. To account for this
transverse extensibility without introducing additional variables, the
variation of deflection w is approximated by integrating the con-
stitutive equation for "z by neglecting the contribution of elastic
compliance and considering only the contribution of the electric
field, as in [12]:

"z �w;z ’ � �d33�;z�z�

) w�x; y; z� �w0�x; y� � ��
j
��z��j�x; y� � ��q

c�z��qc�x; y�
(6)

where ��
j
��z� �

R
z
0
�d33�

j
�;z�z�dz and ��q

c�z� �
R
z
0
�d33�

q
c;z�z�dz. The

in-plane displacements ux and uy are approximated by superposing
local layerwise quadratic and cubic terms �ukL and û

k
L to the third-order

zigzag variation of [12]:

Fig. 1 Geometry of a hybrid plate.
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and the local terms �ukL�x; y; �k� and ûkL�x; y; �k� are given by

�u kL�x; y; �k� � �2kuk1�x; y�; ûkL�x; y; �k� � �3kuk2�x; y� (9)

with
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Similar to the double-superposition hypothesis of Li and Liu [16],
the continuity of u at the layer interfaces is enforced separately for
each of the local terms �ukL and û

k
L, and the group of remaining terms.

This yields the following expressions for �ukL and û
k
L:

�u kL�zk� � �uk�1L �zk� ) uk1 � u01
ûkL�zk� � �ûk�1L �zk� ) uk2 � ��1�ku02

(11)

Substituting ux and uy from Eq. (7) in conjunction with Eqs. (9) and
(11), and w from Eq. (6) into the strain-displacement relations for
shear strains �, and using the constitutive equation for � from
Eqs. (1), transverse shear stresses � are obtained as
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The conditions of zero transverse shear tractions on top and bottom
surfaces and the continuity of � and u at the layer interface between
the ith and (i� 1)th layers are imposed, which yields
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and I2 is a 2 
 2 identity matrix. Equations (14–17) can be written in
the followingmatrix form for the 4L� 8 unknowns uk, k, u

0
1, u

0
2, �,

and �:
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ThematricesA andB�j are partitioned into 2 
 2 submatricesA�p; q�
and B�j �p� and have the following nonzero submatrices:
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for i� 1; 2; . . . ; L� 1. Partitioning �x into vectors of primary
variables �x2, corresponding to the reference surface and the
remaining variables �x1, �x1 can be expressed in terms of �x2 as

�A1 A2 �
�x1
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where A1 and A2 are submatrices of size 4L 
 4L and 4L 
 8,
respectively, and
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Matrices �Ai2 are further partitioned into 2 
 2 matrices �Ai2�p� for
p� 1; 2; . . . ; 2L. Because �, �, and  i in Eqs. (14–16) can be

solved in terms of  0, u
0
1, u

0
2, and �

j
d, it follows that

�A1
2�2i� � 0 for

i� 1; . . . ; L and �A1
2�2L � 1� � 0. Also, Eq. (17) implies

ui � u0 � f� 1;  2; . . . ;  L�, where f is a function of  i ’s. Thus
�A1
2�2i� 1� � I2 for i� 1; 2; . . . ; L � 1. Using Eq. (22), the

unknowns uk,  k, �, and � can be expressed explicitly as
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uk � u0 � �A2
2�2k0 � 1� 0 � �A3
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with k0 � k for k < k0 and k0 � k � 1 for k > k0. Substituting the
previous expressions of uk,  k, �, and � into Eq. (7) yields the final
expression for u as
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j
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whereRk�z�, �Rk�z�, R̂k�z�, andRkj�z� are 2 
 2matrices of functions
of z, for which the expressions are given as follows.
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Rk�z� � �A2
2�2k0 � 1� � z �A2

2�2k0� � z2 �A2
2�2L � 1� � z3 �A2

2�2L�
�Rk�z� � �A3

2�2k0 � 1� � z �A3
2�2k0� � z2 �A3

2�2L � 1�
� z3 �A3

2�2L� � �2kI2
R̂k�z� � �A4

2�2k0 � 1� � z �A4
2�2k0� � z2 �A4

2�2L � 1�
� z3 �A4

2�2L� � �3k��1�kI2
Rkj�z� � C�j �2k0 � 1� � zC�j �2k0�

� z2C�j �2L � 1� � z3C�j �2L� (28)
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(29)

III. Coupled Equilibrium Equations
and Boundary Conditions

The variational principle for the piezoelectric medium [20] can be
expressed, using the notation

h. . .i �
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�. . .�dz

for integration across the thickness, asZ
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8 �u0, �u01, �u02, �w0, � 0, and ��
j. A is the midplane surface area of

the plate and�L is the boundary curve of themidplane, with normaln
and tangent s. p1

z and p
2
z are the transverse loading per unit area on

bottom and top surfaces, respectively. qji denotes the jump in electric

displacementDz across the interface z� zji� , where �ji is prescribed.
The total number of such prescribed potentials is �n�. This variational

equation is expressed in terms of �u0, �u
0
1, �u

0
2, �w0, � 0, and ��

j to
yield the governing equations and boundary conditions.
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with
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f3�z� � � I3 zI3 �k�z� ��k�z� �̂
k�z� �kj�z� �

f4�z� � �Rk;z�z� �Rk;z�z� R̂k;z�z� Rkj;z �z� � ��
j
��z�I2 � ��q

cI2 �

f5�z� � ��j�z�I2 �
q
c�z�I2 �; f6�z� � ��j

;z�z� �
q
c;z�z� �

(33)

�k �
Rk11 0 Rk12 0

0 Rk21 0 Rk22
Rk21 Rk11 Rk22 Rk12

2
4

3
5

��k �
�Rk11 0 �Rk12 0

0 �Rk21 0 �Rk22
�Rk21 �Rk11 �Rk22 �Rk12

2
4

3
5

�̂
k �

R̂k11 0 R̂k12 0

0 R̂k21 0 R̂k22
R̂k21 R̂k11 R̂k22 R̂k12

2
4

3
5

�kj �
Rkj11 0 Rkj12 0

0 Rkj21 0 Rkj22
Rkj21 Rkj11 Rkj22 Rkj12

2
4

3
5

(34)

where I3 is a 3 
 3 identity matrix. The generalized stress resultants
F1,F2,F3, andF4 can be expressed in terms of the displacement and
potential variables by substituting the expressions of �, �,D, andDz

from Eqs. (1) into Eqs. (31) and using Eqs. (3), (4), (6), and (27):

F1 � A �"1 � 	 �"4; F2 � �A �"2 � �	 �"3

F3 � �	T �"2 � �E �"3; F4 � 	T �"1 � Ê �"4
(35)

where
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�"1 � � "T0 KT  T0d u0
T

1d
u0

T

2d
�j

T

dd
�T

�"2 � � T0 u0
T

1 u0
T

2 �j
T

d �q
T

cd
�T

�"3 � ��j;x �j;y �qc;x �qc;y �T; �"4 � ��j �qc �T

"0 � � u0x;x u0y;y u0x;y � u0y;x �T

K � ��w0;xx �w0;yy �2w0;xy �T

 0d
� � 0x;x

 0x;y
 0y;x

 0y;y �T

u01d � � u
0
1x;x

u01x;y u01y;x u01y;y �T

u02d � � u
0
2x;x

u02x;y u02y;x u02y;y �T

�jdd � ��j;xx �j;xy �j;yx �j;yy �T

A� hfT3 �z� �Qf3�z�i; 	� hfT3 �z� �eT3f6�z�i
�A� hfT4 �z�Q̂f4�z�i; �	� hfT4 �z�êf5�z�i
�E� hfT5 �z��̂f5�z�i; Ê� hfT6 �z� ��33f6�z�i (36)

The area integral of Eq. (30) is expressed in terms of generalized
virtual displacements �u0x , �u0y , �w0, � 0x

, � 0y
, ��j, and ��qc by

using the expressions of �, w, and u from Eqs. (4), (6), and (27) and
the definitions of generalized plate resultants in Eqs. (31), and by
employing Green’s theorem wherever required. Because the
generalized virtual displacements are arbitrary, their coefficients are
equalled to zero, resulting in the following equilibrium equations for
the piezoelectric plate:

Nx;x � Nxy;y � 0; Nxy;x � Ny;y � 0

Mx;xx � 2Mxy;xy �My;yy � F5 � 0; Px;x � Pyx;y �Qx � 0

Pxy;x � Py;y �Qy � 0; �Px;x � �Pyx;y � �Qx � 0

�Pxy;x � �Py;y � �Qy � 0; P̂x;x � P̂yx;y � Q̂x � 0

P̂xy;x � P̂y;y � Q̂y � 0; ~Qq
x;x � ~Qq

y;y � ~Hq
x;x � ~Hq

y;y � ~Gq � 0

Sjx;xx � Sjxy;xy � Sjyx;xy � Sjy;yy � �Qj
x;x � �Qj

y;y �Hj
x;x

�Hj
y;y �Gj � Fj6 � 0 (37)

for j� 1; 2; . . . ; n� and q� 1; 2; . . . ; n� � 1. The mechanical

load F5 and the electrical loads Fj6 are defined as

F5 � p1
z � p2

z

Fj6 ��p1
z
��
j
��z0� � p2

z
��
j
��zL� �DzL

�jn� �Dz0
�j1 � qji �jji

(38)

and �ij is Kronecker’s delta. The terms involving components of
virtual displacements in x and y directions in the integral of �L are
expressed in terms of components in n and s directions. This yields
the following boundary conditions on�L, where one of the factors of
each of the following products are prescribed:

u0nNn; u0sNns; w0�Vn �Mns;s�; w0;nMn

 0n
Pn;  0s

Pns; u01n
�Pn; u01s

�Pns; u02n P̂n

u02s P̂ns; �j�Hj � Vj�n � S
j
ns;s�; �j;nS

j
n; �qc� ~Hq

n � ~Vq�n�

and at corners si

w0�si��Mns�si�; �j�si��Sjns�si� (39)

where Vn, V
j
�n
, and ~Vq�n are the mechanical and electromechanical

resultants of transverse shear stresses given by Vn � h�nzi,
Vj�n � h ��

j
��z��nzi, and ~Vq�n � h ��

q
c�z��nzi.

Substituting the expressions of resultants from Eqs. (35) into
Eqs. (37) yields the governing equations of equilibrium in terms of
the primary displacements and electric potential variables in the
following form:

L �U� �P (40)

where

�U� �u0x u0y w0  0x
 0y

u01x u01y u02x u02y �1 �2 . . . �n� �1c �2c . . . �
n��1
c �T

�P� � 0 0 �F5 0 0 0 0 0 0 �F1
6 �F2

6 � � � �Fn�6 0 0 � � � 0 �T
(41)

L is a symmetric matrix of linear differential operators in x and y. For
cross-ply plates, �Q45 � 0, �Q16 � �Q26 � 0, �e14 � �e25 � 0, ��12 � 0,
and �e36 � 0.

To assess the accuracy of this theory, by comparisonwith the exact
3-D piezoelasticity solution [2,4], an analytical Navier solution is
obtained for simply supported rectangular plate of sides a and b
along the axes x and y for the following boundary conditions:

at x� 0; a: Nx � 0; u0y � 0; w0 � 0; Mx � 0

Px � 0;  0y
� 0; �Px � 0; u01y � 0; P̂x � 0

u02y � 0; �j � 0; Sjx � 0; �qc � 0

at y� 0; b: Ny � 0; u0x � 0; w0 � 0; My � 0

Py � 0;  0x
� 0; �Py � 0; u01x � 0; P̂y � 0

u02x � 0; �j � 0; Sjy � 0; �qc � 0 (42)

for j� 1; . . . ; n� and q� 1; . . . ; n��1. The solution and loading
terms piz are expanded in a double Fourier series, satisfying the
boundary conditions identically, as

�w0; �
j; �qc; piz� �

X1
m�1

X1
n�1
�w0; �

j; �qc; piz�mn sin �mx sin �ny

�u0x ; u01x ; u
0
2x
;  0x
� �

X1
m�1

X1
n�1
�u0x ; u01x ; u

0
2x
;  0x
�mn cos �mx sin �ny

�u0y ; u01y ; u
0
2y
;  0y
� �

X1
m�1

X1
n�1
�u0y ; u01y ; u

0
2y
;  0y
�mn sin �mx cos �ny

(43)

with �m�m
=a and �n� n
=b. Substituting these expressions in
Eq. (40) yields a system of algebraic equations for the �m; n�th
Fourier component:

K �Umn � �Pmn (44)
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�U is partitioned intoU (containing the ninemechanical displacement
variables), �s (containing the unknown output voltages at locations

z� zj� where � is not prescribed), and �a (containing the known

actuation voltages). �P is also partitioned accordingly. Equation (44)
is then solved for the unknown variables U and �s. All stress
components, including transverse shear stresses and the electric
displacements, are computed using the constitutive Eqs. (3).

IV. Numerical Results and Discussion

To illustrate the effect of the new local second- and third-order
terms introduced in the present theory, results of the present theory
are compared with those of the conventional ZIGT [12] for both
elastic and hybrid composite plates. Their relative accuracy is
ascertained by direct comparison with exact 3-D elasticity [18] and
piezoelasticity [4] solutions for simply supported rectangular plates.
Themechanical properties of graphite–epoxy composite materials 1,
2, and 3 and the piezoelectric material PZT-5A used in the laminates
are given in Table 1, where Yi, Gij, and �ij denote Young’s moduli,
shear moduli, and Poisson’s ratios, respectively. The electro-
mechanical properties of PZT-5A are

��d31; d32; d33; d15; d24�; ��11; �22; �33��
� ���171;�171; 374; 584; 584�10�12 m=V;

�1:53; 1:53; 1:5�10�8 F=m�

A. Elastic Composite Plates in Cylindrical Bending

Simply supported cross-ply composite panels in cylindrical
bending made of material 1 are analyzed for sinusoidal pressure
p2
z ��p0 sin�
x=a� applied on the top surface. The results are

nondimensionalized with S� a=h and Y0 � 6:9 GPa as

� �u; �w� � �u;w�Y0=ap0; � ��x; ��zx� � ��x; �zx�=p0

The through-the-thickness distributions of �u and ��zx at the support
(x� 0) and �w and ��x at the midspan x� a=2 for two-layer
(0 deg =90 deg), three-layer (0 deg =90 deg =0 deg), and seven-
layer (0 deg =90 deg =0 deg =90 deg =0 deg =90 deg =0 deg)

Table 1 Material properties

Property Units Material 1 Material 2 Material 3 PZT-5A

Y1 G � Pa 172.5 224.25 181.0 61.0
Y2 G � Pa 6.9 6.9 10.3 61.0
Y3 G � Pa 6.9 6.9 10.3 53.2
G12 G � Pa 3.45 56.58 7.17 22.6
G23 G � Pa 1.38 1.38 2.87 21.1
G31 G � Pa 3.45 56.58 7.17 21.1
�12 —— 0.25 0.25 0.28 0.35
�13 —— 0.25 0.25 0.28 0.38
�23 —— 0.25 0.25 0.33 0.38

Fig. 2 Through-the-thickness distributions of �u, �w, ��
x
, and ��

zx
for a

two-layer composite panel under pressure load.

Fig. 3 Through-the-thickness distributions of �u, �w, ��
x
, and ��

zx
for a

three-layer composite panel under pressure load.

Fig. 4 Through-the-thickness distributions of �u, �w, ��
x
, and ��

zx
for a

seven-layer composite panel under pressure load.
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symmetric composite panels with S� 4 are presented in Figs. 2–4,
respectively. The distributions of ��zx, based on the 1,2-3 GLT of Li
and Liu [16], are also shown for comparison. Similar results for
six-layer antisymmetric (0 deg =90 deg =0 deg =90 deg =0 deg =
90 deg) panel with S� 4 are presented in Fig. 5 and compared with
those of Zhen andWanji [17] based on the GLT. It is revealed that the
present theory yields more accurate distributions than the ZIGT, not
only for the transverse shear stress ��zx, but also for the in-plane and
transverse displacements and in-plane stresses in all cases. For the
symmetric laminates, the GLT with 11 primary displacement
variables predicts distributions of ��zx more accurately than the
present theory with nine unknowns, but the present theory also
predicts the maximum value of ��zx quite accurately. For the unsym-
metric six-layer laminate, however, the present theory’s predictions
of ��zx are better than that of the GLT.

B. Rectangular Elastic Composite Plate

An all-around simply supported rectangular composite plate of
four-layer (0 deg =90 deg =90 deg =0 deg) symmetric laminate of
graphite–epoxy (material 2) is analyzed next for bisinusoidal
pressure p2

z ��p0 sin�
x=a� sin�
y=b� applied on the top surface.
The results are nondimensionalized, as previously mentioned. The
through-the-thickness distributions according to the 3-D elasticity
solution, the present theory, and the ZIGTare presented in Fig. 6 for
S� 4 and b=a� 2. It is revealed that the present theory is able to
predict the distributions of �v, ��x, and ��zx very accurately, including
the nonlinear variations in �v and ��zx in the top and bottom layers,
which the ZIGT is unable to predict. Even though the nonlinear
variation ofw is not captured by the 2-D theories with constantw, the
central deflection is more accurately predicted by the present theory
than the ZIGT.

Fig. 5 Through-the-thickness distributions of �u, �w, ��
x
, and ��

zx
for a six-

layer antisymmetric composite panel under pressure load.

Fig. 6 Through-the-thickness distributions of �v, �w, ��
x
, and ��

zx
for a

four-layer composite rectangular plate under pressure load.

Fig. 7 Through-the-thickness distributions of �u, �w, ��
x
, and ��

zx
for a hybrid composite plate under pressure load.
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C. Rectangular Hybrid Composite Plate

The rectangular hybrid composite plate with b=a� 3 analyzed in
[12] is considered next. The plate has a four-layer graphite–epoxy
laminate [0 deg =90 deg =90 deg =0 deg] of material 3, with each
layer of thickness 0:225h. A PZT-5A layer of thickness 0:1h, having
poling along the �z direction, is bonded to the top of the elastic
laminate called substrate. The interface between the substrate and the
piezoelectric layer is grounded. Two load cases are considered as
follows:

1) Pressure p2
z ��p0 sin�
x=a� sin�
y=b� is applied on the top

surface, which is grounded.
2) Actuation potential �n� � �0 sin�
x=a� sin�
y=b� is applied

on the top surface.
The results for these two load cases are nondimensionalized with

d0 � 374 
 10�12 CN�1 and Y0 � 10:3 GPa as follows:
1) � �u; �w� � 100�u;w=S�Y0=hS3p0 and � ��x; ��zx� � ��x; S�zx�=

S2p0.
2) � �u; �w� � �u;w=S�=Sd0�0 and � ��x; ��zx� � ��x; S�zx�h=Y0d0�0.
The through-the-thickness distributions of �u, �w, ��x, and ��zx

obtained from the present theory, the ZIGT, and the piezoelasticity
solution [4] for thick (S� 5) and moderately thick (S� 10) hybrid
plates are compared in Figs. 7 and 8 for load cases 1 and 2,
respectively. It is revealed that, in general, the present theory yields
superior results compared with the ZIGT. In particular, ��zx predicted
by the ZIGT from direct constitutive relations for potential load
case 2 is highly erroneous, whereas the present theory has shown
considerable improvement. However, more accuracy is desirable in
predicting the transverse shear stress at the interface of actuated
piezoelectric layers for reliable results. The improvement in the
present theory over the ZIGT for the prediction of transverse dis-
placement w under load case 2 is also very significant.

V. Conclusions

The new coupled local higher-order ZIGT for hybrid piezoelectric
plates is a significant improvement over the existing ZIGT, not only
in predicting transverse shear stresses directly from constitutive
equations without any postprocessing, but also for other stresses and
displacements. The inclusion of local higher-order terms in the
expression of in-plane displacements enables predictions of higher-
order layerwise variations of in-plane displacements as well as
transverse shear stresses quite accurately. Of particular significance
is the much improved prediction of transverse shear stresses at the
interface between the host substrate and the actuated layer directly

from constitutive equations, for which the existing ZIGTyields very
poor results. The prediction of deflection for the electric potential
load case by the present theory is also very accurate and superior to
the ZIGT.
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