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A new coupled efficient layerwise higher-order theory is presented for analysis of hybrid piezoelectric composite
plates with the aim of predicting transverse shear stresses directly from the constitutive equations. The theory is
developed by superposing layerwise quadratic and cubic terms on the third-order zigzag approximations of the
existing zigzag theory. The electric potential is assumed to be quadratic across the layers. By satisfying the interface
continuity conditions for each of the two local terms separately and enforcing the conditions on the transverse shear
stresses at layer interfaces and top and bottom surfaces, the number of displacement unknowns is reduced to nine.
Comparisons with the three-dimensional exact solutions reveal that the present theory is a significant improvement
over the existing zigzag theory for elastic and hybrid composite plates. It yields superior results, not only for
transverse shear stresses, but also for other response entities, including the layerwise higher-order variations of in-
plane displacements and nonuniform distribution of deflection under electric potential load.

L

AMINATED composite plates are extensively used as structural

members in aerospace, automotive, and shipbuilding industries
today. Interlaminar transverse stresses are the predominant cause of
failure (through delamination) in these laminated structures. In
recent times, distributed piezoelectric sensors and actuators are
integrated in these laminates to render self-sensing and actuation
capabilities for active vibration control, shape control, noise control,
and health monitoring (sensing) applications. In most cases, these
piezoelectric elements are poled parallel to the applied electric field
(in the thickness direction) and the membrane strains induced in them
by the applied electric potential are used for the actuation (and
conversely sensing), which is known as the extension actuation
mechanism. This, however, induces large interlaminar transverse
shear stresses at the interface between the actuated piezoelectric layer
and the elastic laminate called the substrate, which may lead to
weakening/delamination at the interface, causing drastic reduction in
the actuating/sensing authority of the piezoelectric layer despite
potential structural failure. The accurate prediction of interlaminar
transverse stresses in elastic and piezoelectric laminates through a
two-dimensional (2-D) laminate theory that is efficient, directly
using constitutive equations, is a challenging task before the
researchers. The present work is aimed to address this important
issue.

A recent review of the state-of-the-art of smart structures can be
found in [1]. Analytical three-dimensional (3-D) piezoelasticity
solutions yield an accurate prediction of the interlaminar stresses in
piezoelectric laminated structures, but such solutions are available
only for some specific geometries and boundary conditions [2—4].
Among the available 2-D theories for hybrid plates, the coupled
discrete layer theories (DLTs) [5] considering layerwise linear
variation of displacements and electric potential are the most
accurate, but they suffer from an excessive number of displacement
unknowns in proportion to the number of layers. Moreover, the DLTs
with layerwise linear variation yield constant shear stresses through
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each layer and hence require a large number of discrete layers to
obtain the accurate profiles of transverse shear stresses across the
thickness. Coupled first-order shear deformation theory (FSDT) [6—
8], refined third-order theory (TOT) [9,10], and consistent TOT [11]
have been developed, wherein the displacements are assumed to
follow a global (first and higher order) variation across the thick-
ness. These theories violate the slope discontinuity of in-plane
displacements and the continuity of transverse shear stresses at the
layer interfaces, yielding inaccurate global (deflection, in-plane
stresses, etc.) as well as local (transverse stresses) response of moder-
ately thick and even thinner laminates. Kapuria [12] and Kapuria and
Achary [13] extended the efficient zigzag theory (ZIGT) of elastic
laminated plates [14,15] to the fully coupled electromechanical
response of hybrid piezoelectric plates, wherein the assumptions of
displacements are the same as in the DLTSs with additional quadratic
and cubic global variation across thickness for the in-plane dis-
placements and, incorporating nonuniform variation of transverse
displacement, contributed by the electric field. But the number of
displacement variables is reduced to only five, like FSDT and TOT,
by enforcing transverse shear continuity conditions at layer inter-
faces and shear traction free conditions at top and bottom surfaces
exactly. This theory has been found to yield very accurate results for
global static and dynamic response of hybrid plates with highly
inhomogeneous composite as well as sandwich substrates. But, it is
unable to accurately predict the transverse shear stresses directly
from the constitutive equations, which can only be obtained
by integrating the 3-D equations of momentum. The integration,
however, requires computation of higher-order derivatives of dis-
placements, which poses difficulties in the finite element imple-
mentation and is still a great concern. This issue was apparently first
addressed for elastic laminated plates by Li and Liu [16], who
proposed a global-local theory (GLT) wherein local layerwise terms
up to the third order are combined with the global third-order
variations of in-plane displacements using double-superposition
hypothesis. The continuity of the local displacement terms at the
layer interfaces is satisfied in two groups, and conditions on the trans-
verse shear stresses are satisfied to reduce the number of unknown
displacement variables to 11. The theory was shown to predict the
transverse stresses accurately from constitutive equations without
using any postprocessing method. The theory was later generalized
for the mth-order global variation by Zhen and Wanji [17].

In the present work, anew fully coupled efficient layerwise higher-
order theory is developed for hybrid plates by adding local second-
and third-order terms to the ZIGT approximations [12,13] of in-plane
displacements, with the aim of predicting transverse shear stresses
directly from constitutive equations. By satisfying the continuity of
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in-plane displacements at layer interfaces for each of the local terms
separately and enforcing the conditions on transverse shear stresses,
the number of primary displacement variables is reduced to nine. The
electric potential is assumed to follow a quadratic variation across the
piezoelectric layers, unlike the piecewise linear variation assumed in
[12,13]. The accuracy of the theory is assessed in comparison with
the 3-D exact piezoelasticity solutions [4,18] for both elastic and
hybrid simply supported rectangular composite plates. The new
theory differs from the ZIGT [12], not only due to the inclusion of
layerwise higher-order terms in the expansion of in-plane displace-
ments and the higher-order variation of electric potential, butalso due
to the adoption of a more general approach in obtaining the final
variations of displacements. The additional displacement and poten-
tial variables lead to additional equations of momentum and charge
balance. Most important, the new theory yields quite an accurate
prediction of transverse shear stresses in elastic as well as hybrid
laminates, which the earlier ZIGT and other theories of the same
efficiency are unable to do.

II. Displacement and Electric Field Approximations

Consider a hybrid piezoelectric rectangular plate (Fig. 1) of
thickness & consisting of L perfectly bonded orthotropic layers with
the midplane chosen as the x—y plane. The plate is loaded trans-
versely on its top and bottom surfaces. Some of its layers are of
orthorhombic piezoelectric material exhibiting class mm2 symmetry
[19] with poling along the thickness direction z. The z coordinate of
the bottom surface of the kth layer from the bottom is denoted as
7 = 7. The layer in which the reference plane lies, or is at the
bottom of, is denoted as the kyth layer.

Using the usual assumption of negligible transverse normal stress
[0.(0. >~ 0)] made in most 2-D theories, the 3-D linear constitutive
equations of piezoelasticity [19,20] reduce to

o=Qe—elE., t=Qy—¢E
D=¢Ty + fiE, D_ =& + nkE; D
where
o _ _
T X DX
o=| 0y, |, T= s D=
’ Ty D,
Tyy -7 B
e L _
! Vex E,
e=|¢ |, y= , E=
’ Vi  E,
yxy
01 On O - - -
_ - - - A Oss Ous . | €15 eos
0= 01 O0»n 0 | Q=|:— - | €=
- = - Qus Ou €1y €
Ois O Oes
R UITRILS _ -
n= [_ _ :| ey =[e; ey e3] 2
M2 N

o and ¢ are the in-plane stress and strain components, respectively; t
and y denote the transverse shearing stress and strain components,
respectively; Q;;, e;;, and 7;; are the reduced elastic stiffnesses,
piezoelectric stress constants, and electric permittivities, respec-
tively; and E; and D; (i = x, y, and z) denote the electric field and
electric displacement components, respectively.

Letu,, u,, and w be the in-plane and transverse displacements and
¢ be the electric potential. The strain-displacement and electric field-
electric potential relations for a small strain condition are

Ex = Uy x» Sy = uy,)" & =W,
Vyz = Uy .z + Wy, Vox = Uy ; +w, Viy = Uy + Uy x
Ex = _¢.x7 Ey = _¢.y7 Ez = _¢,z (3)
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Fig. 1 Geometry of a hybrid plate.

The subscript comma denotes differentiation. The in-plane electric
fields E, and E, may be applied by actuation through segmented
piezoelectric actuator layers and/or induced due to the direct
piezoelectric effect.

The 3-D piezoelasticity solutions [2—4] of piezoelectric plates
poled along the thickness direction have shown that the electric
potential ¢ in a piezoelectric layer follows a nearly quadratic
distribution along the thickness. Accordingly, ¢ is approximated as a
piecewise quadratic between n, points at z = Z?,b across the thickness
of the laminate:

$(x.y.2) = V()¢ (x, ) + ()P (x, ) )

where ¢/(x,y) = ¢(x,y, thb) denotes the electric potentials at
piezoelectric layer surfaces/interfaces and ¢f(x,y) denotes the
quadratic component of electric potential at z = (z§ + zj,“) /2. The
summation convention is used for repeated indices, with the indices j
and ¢ taking values j=1,2, ... ,ngand ¢=1,2, ..., ny—1.
\Ilfp (z) is a piecewise linear function and W{ (z) is a quadratic function
given by

0 ifz<z,' or z>z)"
Vi@ =1 (=2 )/ (-2 ") if 2! <z <2
1 i e 1
(zy =/ (5 —zp) ifzy <z <z,
+1 +1 . +1
Wi(2) = 4(z§" =D =2/ (zf" —zp)* if zj<z=<z]
o 0 otherwise

(&)

Exact 3-D piezoelasticity solutions [2—4] have also revealed that
the thickness of a piezoelectric layer undergoes change primarily due
to the dj; effect in presence of the electric field. To account for this
transverse extensibility without introducing additional variables, the
variation of deflection w is approximated by integrating the con-
stitutive equation for &, by neglecting the contribution of elastic
compliance and considering only the contribution of the electric
field, as in [12]:

=W, = —C;33¢,z(2)

= w(x7y7 Z) = w()(x’y) - \I/q’b(z)qbl(x,y) - @?(z)(ﬁf(x,y)
(©6)

where W) (z) = [5 d33W; (z)dz and Wi(z) = [; d33W{.(z)dz. The
in-plane displacements u, and u, are approximated by superposing
local layerwise quadratic and cubic terms ¥ and #¥ to the third-order
zigzag variation of [12]:
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u(x,y.2) = u(x,y) — 2w, + 29 (x, y) + 22£(x, y)
+ Zn(x,y) + g (x,y, &) + i (x.y. &) (7

where
| 4 | Uk, _ 1/% _ | Wox
ol I Al A ol e ]
_ Ex _ Nx ~k __ ﬁ]i,( ko ﬁlix
5= |:¥y 7 = ny e ﬁlix 7 o ﬁli»‘

and the local terms ¥ (x, v, §;) and @ik (x, y, {;) are given by

wf ey, &) =Guk(x,y),  af(xy. &) =gGub(x.y) (9

uf s
k — * k — i —
uy = A wm=1 | SGe=az— by
u u
1, 2,

2 e+ 2
ay=——1, bk ==
Zk — g1 Lk — Zg—1

with

10)

Similar to the double-superposition hypothesis of Li and Liu [16],
the continuity of u at the layer interfaces is enforced separately for
each of the local terms #% and ¥, and the group of remaining terms.
This yields the following expressions for X and i :

iwg(z) = “k+](2k) = uf =uf

ik (z) = =i (zp) = ub = (=D)kul

an

Substituting u, and u, from Eq. (7) in conjunction with Eqgs. (9) and
(11), and w from Eq. (6) into the strain-displacement relations for
shear strains y, and using the constitutive equation for 7 from
Eqgs. (1), transverse shear stresses 7 are obtained as

v = QMY + 228 + 3220 + 24 + 383 (= 1)raud)]
+ [ W) (2) — 0" ()l + [F W () — Q“ WA ()lpe,  (12)

g} wlf]

The conditions of zero transverse shear tractions on top and bottom
surfaces and the continuity of T and u at the layer interface between
the ith and (i 4+ 1)th layers are imposed, which yields

where

T(z9) =0 = ¥y + 220 + 31077 2al“l 3al”z Qo,‘]):; (14)

() =t(z) = 0 'Yy — Oy + 22,006 + 32200
—205u) — 3(~1)'Qhul = 0%, (15)

1(z) = 0= ¥y, + 22,6 + 3230 + 2a,ul + 3a, (D) ud = O, ;¢
(16)

uzy) = u(z) = wip + 2% —u; — 29, =0 (17)
L—1;0), 0. on, QLj, and QA';J are given by
0\=0""-0", 0y =)l —(0") 18" W(z)

0y =0"ay +0'a. Oy =Wzl — Q") W(z,)
Qz, Q1 ¢(z)+(e _eH—I)“Iﬂ (z:) (18)

where i = 1,

and [, is a 2 x 2 identity matrix. Equations (14—17) can be written in
the following matrix form for the 4L + 8 unknowns u, ¥, u?, u3, &,
and n:

Ax = Bl¢) (19)

where Aisa4L x (4L + 8) matrix, B? isa4L x 2ny matrix, and X is
given by
=[ul [ o v5 .. owp yp & " W WY

(20)

The matrices A and Bf;’ are partitioned into 2 x 2 submatrices A(p, q)
and Bj.’( p) and have the following nonzero submatrices:

A(1,2) =1,
A(1,2L + 1) = 22015,
A(1,2L +2) = 3221,

AQi+1,2i) = —z1,
AQi+1.2i+1)=1,
AQi+ 1.2 +2) =z,

A(1,2L +3) = —2a,1,, AQL,2L)=1,
A(,2L + 4) = —3a,1,,  AQL,2L+1)=2z,1,
AQi2))=-0'.  AQL.2L+2)=321
t+1 (21)
AQ2i,2i+2)=0"",  AQL.,2L +3)=2a,1,

AQL.2L + 4) = 3a, (—~1)"1,
BI(1) = Oy
AQi2L +3)=-205,  BYQi)= 0}
AQi,2L +4) = -3(=1)'05,  BQL)=0,;
AQi+1.2i— 1) = -1,

AQi2L + 1) = 27,0},
AQi.2L +2) =320,

for i=1,2, L — 1. Partitioning X into vectors of primary
variables x,, corresponding to the reference surface and the
remaining variables X, X; can be expressed in terms of X, as

[A, Az][;] = Bl¢) = 5 = Akt + Clg, (22

where A, and A, are submatrices of size 4L x 4L and 4L x 8,
respectively, and

Yi=[ul v w v ... oul Yyl ... & ')

i=1,2, ..., L and i#k,

H=luf vl W Wyl (23)
A — Al b _ A—1Rpd
Ay=—AT'Ay,  C)=A7'B] (24)

Let A}, A2, A3, and A% be submatrices of matrix A,, each of size
4L x 2, such that

A,=[A} A3 A} A3] (25)

Matrices Aé are further partitioned into 2 x 2 matrices A5(p) for
p=12, , 2L. Because &, n, and v, in Egs. (14 16) can be
solved in terms of ¥, ul, u9, and qbd, it follows that A}(2i) = 0 for
i=1, ,L and AJ2L—1)=0. Also, Eq. (17) implies
u; = Uy —|— f(l/fl, Yo, ..., ¥r), where f is a function of ¥;’s. Thus
AY2i—1) =1, for i= 1,2, L —1. Using Eq. (22), the
unknowns uy, ¥y, £, and n can be expressed explicitly as
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we = ug + A32K — 1)y + A32K — 1ud + A3(2K' — 1)u
+ L2k — 1))
Vi = AR + AS(2K)uf + A3(2K)ul + C7(2K) 4
£=A3Q2L — DYy + AL — Dud + A3 2L — 1)l
+ Cl2L - )¢},
n=A32L)Y, + ALY} + A3L)uY + CT L), (26)
with k' = k for k <k, and k' =k — 1 for k > k,. Substituting the

previous expressions of uy, ¥, & and 7 into Eq. (7) yields the final
expression for u as

u(x,y,2) = uy — 2wy, + R*(2)Yo + R* (2)uf
+ R (2ul + RY (2)¢), 27)
where R¥(z), R¥(z), R*(2), and R¥(2) are 2 x 2 matrices of functions

of z, for which the expressions are given as follows.
For k # k,

R¥(z) = AZ(2k' — 1) + zA3(2K) + 22A3(2L — 1) + 2 A3(2L)
R*(z) = A3(2k' — 1) + zA3(2K) + 2A3(2L — 1)
+ AL + &1,
R¥(z) = A3(2K' — 1) + zA3(2K) + 2A3Q2L — 1)
+ 2A32L) + G(=D L,
j _ P / b /
RM(z) = CY(2K — 1) + zCY(2K))
+22C?2L — 1) + 2 C?(2L) (28)
For k = k,
R¥(2) = zl, + 22A3(2L — 1) + 3A%(2L)
RMz) = 2A32L — 1) + 2A32L) + G,
R'(2) = 2A3Q2L — 1) + ZA3Q2L) + G (- DL,
j _ ¢ 3 P
RN (z) = 22C7(2L — 1) + 2 CY(2L)

29)

III. Coupled Equilibrium Equations
and Boundary Conditions

The variational principle for the piezoelectric medium [20] can be
expressed, using the notation

L Z;
)= ood
() Z/( )dz

for integration across the thickness, as

/[(O-x(sgx + Gy(sgy + Txy(syxy + Tyzsyyz + szfsyzx + Dx8¢.x

A
+ D\&p\ + D18¢,z> - pé(gw(x,y, ZO) - p%éw(x, Yy, ZL)
+ Dz(xv Ys ZO)(S¢1 - DZ(X, Y, ZL)(S¢VLQj - qj,8¢h]dA

— / (0,6u, + t,,0u; + 1,.6w + D,8¢)ds =0 (30)
Iy

Y Sug, 8ul, §ul, Swy, 810, and §¢. A is the midplane surface area of
the plate and I'; is the boundary curve of the midplane, with normal n
and tangent 5. p! and p? are the transverse loading per unit area on
bottom and top surfaces, respectively. g;, denotes the jump in electric
displacement D, across the interface z = zg’, where ¢/ is prescribed.
The total number of such prescribed potentials is 72,,. This variational

equation is expressed in terms of Sug, §u?, §u3, Swy, 8, and 8¢ to
yield the governing equations and boundary conditions.

The stress resultants F; and F, and the electric displacement
resultants F; and F, are defined by

Fy=[NT M" PT PT PT S§I"1 =[(fI(2)0)]
Fy=[o" 9" 0" ¢ O"I'=[{fi@)]

., 31)
Fs=[H" A"] =[{f;()D)]
Fy,=[6" G'I" =[{fi(2)D.)]
with
N:[Nx Ny Nx\]Tv M_[MX M)' MW]
p=[pP, P, P, PJ, P=[P, Isyx ﬁx}' 13."]T

ﬁ:[i)x ﬁyx Axy ﬁy]T’ S'/:[S{‘ S,{‘x S']\“,V S{V:]T
Q:[Qx Q\]T» Q:[Qx Qv]T
0=[0, O,. 0Q'=[0 QT

and

f3) =1L z, d(z) D) @) D))
[ =[RLG) RiG) Ri() RY()— WL, —ViL]
fs@ =W, VL],  fo@)=[V.(2) Wi.(2)]

(33)
R, 0 Ry O
o =| 0 R 0 R
| RS, R, R5 R
R, 0 RY 0]
- 0
Q" = (z Ifél _0 If%z
RZI RTI R]2(2 R12 . (34)
N (R, 0 R, 0]
_Rzl Rll R22 R12_

ki — kj kj
@i=| 0 R{ 0 RY
Rzﬁ Rl'{ Rz’é Rlé

where /5 is a 3 x 3 identity matrix. The generalized stress resultants
F, F,, F3,and F, can be expressed in terms of the displacement and
potential variables by substituting the expressions of o, r, D, and D,
from Egs. (1) into Egs. (31) and using Egs. (3), (4), (6), and (27):

Fy=Ag, + By,
Fy=p"s, — E&,,

F, = A&, + B&,

. (35)
Fy= ﬁTgl — Eé,

where
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E=lep KT vp, ol Wy 9
B=lyl uf W ¢ ot
B=[gh ¢) ¢t oL ). E=[¢ ¢l]
g0 =[Uo.x Uo,y Uo,y T Uo ]

K=[—Wo —Woyy _ZwO.Xy]T
Yo, =[Yo.x Yoy Yo,x Vol

— 0 0 T
Mld—["‘lX.x Uiy Uix uy y1

Mgd = [ng.x ugx.y u(Z).,x MZ‘..y
¢{1d = [‘i},/xx ¢,]:¥>' ¢.j:vx ‘ﬁjy.v ]T
= (f1(0f:(2).  B= (L& fe(2))
= (f10f:(2)).  B={fl(2)efs(2)

= (T2 f5(2)). = (1§ (2)7133/6(2)) (36)

U:[uo). Uy, Wy Yo, Yo, u?x ”(1)

P=[0 0 —F; 0 0 0 0 0 0 —F}

The area integral of Eq. (30) is expressed in terms of generalized
virtual displacements 8uq _, Suq , Swy, 8%, , 8y, , 8¢/, and 8¢ by
using the expressions of ¢, w, and u from Egs. (4_1), (6), and (27) and
the definitions of generalized plate resultants in Egs. (31), and by
employing Green’s theorem wherever required. Because the
generalized virtual displacements are arbitrary, their coefficients are
equalled to zero, resulting in the following equilibrium equations for
the piezoelectric plate:

Nex+ Ny, =0, Nyx+N,,=0
M +2My o+ M, +Fs=0, P, +P,, —0,=0
Py.,+P,,—0,=0, P +P,  —0,=0
Py + Py —0,=0, P +P,,—0,=0

ﬁx)ux + ﬁy.y - Qy = 07 QZ x + Q;Iy + FIZ’C + I:I)‘{x - G~q =0

S.Jxl,xx + S{'y,xy + S yx,xy + Sx LYy Q!cx - _i;,y - H«J;,X
—Hj,+G —F,=0 (37)

for j=1,2, , ny and g = 1’2’ s ng— L The mechanical
load F5 and the electrical loads F are defined as

Fs=pl+p?

) (38)
Fg=— 1‘IJ](Z())_ le’](ZL)‘f‘D

— D8, +4q;8;,

2 Yjng

and §;; is Kronecker’s delta. The terms involving components of
virtual displacements in x and y directions in the integral of I'; are
expressed in terms of components in z and s directions. This yields
the following boundary conditions on I'; , where one of the factors of
each of the following products are prescribed:

u

wO(Vn + Mm‘.x)v
wO,,Pns wOSPns? u(l)nﬁn?

WPy PH =V =Sk, ¢hSh. ¢UHL— V)

MO,, Nn ’ uOA Nnx’ wO.nMn

0 p 0 p
uj Pns’ u2,,Pn

s

and at corners s;

wo(s)AM,(s)). ¢/ (s) AShs(s) (39)
where V,,, Vé;", and \7;” are the mechanical and electromechanical
resultants of transverse shear stresses given by V, =(z,.),
Vi, = (¥3(2)7,.), and Vi = (Wi(2)7,,.).

Substituting the expressions of resultants from Egs. (35) into
Eqgs. (37) yields the governing equations of equilibrium in terms of
the primary displacements and electric potential variables in the
following form:

LU=P (40)

where

0 1 2 n 1 2 ny=lar
S g @ g e B T )

—F} .- —F?’ 00 --- 0]

L is a symmetric matrix of linear differential operators in x and y. For
cross-ply plates, Qus =0, Q1 = Qs =0, &4 = &5 =0, 7];, =0,
and e;; = 0.

To assess the accuracy of this theory, by comparison with the exact
3-D piezoelasticity solution [2,4], an analytical Navier solution is
obtained for simply supported rectangular plate of sides a and b
along the axes x and y for the following boundary conditions:

at x =0, a: N, =0, uy, =0, wy, =0, M,=0
P,=0. ¥, =0, P.=0. u =0 P.=0
ug =0, ¢'= si=0, ¢i=0
aty =0, b: N, =0, uy, =0, wy =0, M,=0
P,=0, Yy, =0, P,=0, u) =0 P,=0
u =0, =0, S§=0 ¢l=0 (42
forj=1, ,ngandg =1, ..., n4 . The solution and loading

terms p' are expanded in a double Fourier series, satisfying the
boundary conditions identically, as

(wOv ¢I ¢l ) pz) = Z Z(wo ¢/ ¢l » Pz )mn sin 712x sin I’ly

m=1 n=
(mﬂwww=22wﬂb&mMmmmw
m=1 n=1
(M&www— Z%wmm%mmmmw

(43)

with m = mm/a and n = n/b. Substituting these expressions in
Eq. (40) yields a system of algebraic equations for the (m,n)th
Fourier component:

KUmn — Pmn (44)
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Table 1 Material properties

Property Units  Material 1 Material 2 Material 3 ~ PZT-5A
Y, G-Pa 172.5 224.25 181.0 61.0
Y, G-Pa 6.9 6.9 10.3 61.0
Y3 G-Pa 6.9 6.9 10.3 532
G, G-Pa 3.45 56.58 7.17 22.6
Gy G-Pa 1.38 1.38 2.87 21.1
Gy, G-Pa 3.45 56.58 7.17 21.1
vy e 0.25 0.25 0.28 0.35
Vi3 — 0.25 0.25 0.28 0.38
Vo3 —_— 0.25 0.25 0.33 0.38

U is partitioned into U (containing the nine mechanical displacement
variables), @, (containing the unknown output voltages at locations
z= z{b where ¢ is not prescribed), and ®, (containing the known
actuation voltages). P is also partitioned accordingly. Equation (44)
is then solved for the unknown variables U and ®,. All stress
components, including transverse shear stresses and the electric
displacements, are computed using the constitutive Egs. (3).

IV. Numerical Results and Discussion

To illustrate the effect of the new local second- and third-order
terms introduced in the present theory, results of the present theory
are compared with those of the conventional ZIGT [12] for both
elastic and hybrid composite plates. Their relative accuracy is
ascertained by direct comparison with exact 3-D elasticity [18] and
piezoelasticity [4] solutions for simply supported rectangular plates.
The mechanical properties of graphite—epoxy composite materials 1,
2, and 3 and the piezoelectric material PZT-5A used in the laminates
are given in Table 1, where Y;, G;;, and v;; denote Young’s moduli,
shear moduli, and Poisson’s ratios, respectively. The electro-
mechanical properties of PZT-5A are

[(d31, d3s, d33, dis5, dos), (115 M2, N33)]
=[(=171,—171,374,584,584)107"2 m/V,
(1.53,1.53,1.5)107% F/m]
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Fig. 2 Through-the-thickness distributions of u, w, 7,, and 7,, for a
two-layer composite panel under pressure load.

A. Elastic Composite Plates in Cylindrical Bending

Simply supported cross-ply composite panels in cylindrical
bending made of material 1 are analyzed for sinusoidal pressure
p? = —pysin(nx/a) applied on the top surface. The results are
nondimensionalized with § = a/h and Y, = 6.9 GPa as

(IZ, li)) = (M, w)Yo/aI’(), (5x7 ‘Ez,\') = (GX’ sz)/p()

The through-the-thickness distributions of i and 7_, at the support
(x=0) and w and o0, at the midspan x = a/2 for two-layer
(0 deg /90 deg), three-layer (0 deg /90 deg /0 deg), and seven-
layer (0 deg/90 deg /0 deg /90 deg /0 deg /90 deg /O deg)
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Fig. 3 Through-the-thickness distributions of u, w, ¢,, and 7, for a
three-layer composite panel under pressure load.
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Fig. 4 Through-the-thickness distributions of u, w, 6,, and 7,, for a
seven-layer composite panel under pressure load.
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Fig. 5 Through-the-thickness distributions of u, w, 6., and 7, for a six-
layer antisymmetric composite panel under pressure load.

symmetric composite panels with S = 4 are presented in Figs. 24,
respectively. The distributions of 7,,, based on the 1,2-3 GLT of Li
and Liu [16], are also shown for comparison. Similar results for
six-layer antisymmetric (0 deg /90 deg /0 deg /90 deg /0 deg/
90 deg) panel with § = 4 are presented in Fig. 5 and compared with
those of Zhen and Wanji [17] based on the GLT. Itis revealed that the
present theory yields more accurate distributions than the ZIGT, not
only for the transverse shear stress 7_,, but also for the in-plane and
transverse displacements and in-plane stresses in all cases. For the
symmetric laminates, the GLT with 11 primary displacement
variables predicts distributions of 7, more accurately than the
present theory with nine unknowns, but the present theory also
predicts the maximum value of 7_, quite accurately. For the unsym-
metric six-layer laminate, however, the present theory’s predictions
of 7_, are better than that of the GLT.

Fig. 6 Through-the-thickness distributions of v, w, 6,, and 7, for a
four-layer composite rectangular plate under pressure load.

B. Rectangular Elastic Composite Plate

An all-around simply supported rectangular composite plate of
four-layer (0 deg /90 deg /90 deg /0 deg) symmetric laminate of
graphite—epoxy (material 2) is analyzed next for bisinusoidal
pressure p? = —p, sin(srx/a) sin(wy/b) applied on the top surface.
The results are nondimensionalized, as previously mentioned. The
through-the-thickness distributions according to the 3-D elasticity
solution, the present theory, and the ZIGT are presented in Fig. 6 for
S =4 and b/a = 2. It is revealed that the present theory is able to
predict the distributions of v, 6,, and 7, very accurately, including
the nonlinear variations in v and 7, in the top and bottom layers,
which the ZIGT is unable to predict. Even though the nonlinear
variation of w is not captured by the 2-D theories with constant w, the
central deflection is more accurately predicted by the present theory
than the ZIGT.
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Fig. 7 Through-the-thickness distributions of u, w, 6., and 7., for a hybrid composite plate under pressure load.
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Fig. 8 Through-the-thickness distributions of u, w, 6., and 7., for a hybrid composite plate under potential load.

C. Rectangular Hybrid Composite Plate

The rectangular hybrid composite plate with b/a = 3 analyzed in
[12] is considered next. The plate has a four-layer graphite—epoxy
laminate [0 deg /90 deg /90 deg /0 deg] of material 3, with each
layer of thickness 0.225h. A PZT-5A layer of thickness 0.1/, having
poling along the +z direction, is bonded to the top of the elastic
laminate called substrate. The interface between the substrate and the
piezoelectric layer is grounded. Two load cases are considered as
follows:

1) Pressure p? = —p, sin(x/a) sin(ry/b) is applied on the top
surface, which is grounded.

2) Actuation potential ¢"¢ = ¢, sin(rx/a) sin(wy/b) is applied
on the top surface.

The results for these two load cases are nondimensionalized with
dy =374 x 10712 CN~! and Y,, = 10.3 GPa as follows:

1) (i, w) = 100(u, w/$)Yo/hS’py and (6..7.,) = (0, 57.)/
S?po-

2) (’27 TI)) = (M, H)/S)/Sd0¢0 and (6x’ ‘sz) = (Ox’ Stzx)h/YOdOd)O'

The through-the-thickness distributions of u, w, &,, and 7
obtained from the present theory, the ZIGT, and the piezoelasticity
solution [4] for thick (S = 5) and moderately thick (S = 10) hybrid
plates are compared in Figs. 7 and 8 for load cases 1 and 2,
respectively. It is revealed that, in general, the present theory yields
superior results compared with the ZIGT. In particular, 7, predicted
by the ZIGT from direct constitutive relations for potential load
case 2 is highly erroneous, whereas the present theory has shown
considerable improvement. However, more accuracy is desirable in
predicting the transverse shear stress at the interface of actuated
piezoelectric layers for reliable results. The improvement in the
present theory over the ZIGT for the prediction of transverse dis-
placement w under load case 2 is also very significant.

V. Conclusions

The new coupled local higher-order ZIGT for hybrid piezoelectric
plates is a significant improvement over the existing ZIGT, not only
in predicting transverse shear stresses directly from constitutive
equations without any postprocessing, but also for other stresses and
displacements. The inclusion of local higher-order terms in the
expression of in-plane displacements enables predictions of higher-
order layerwise variations of in-plane displacements as well as
transverse shear stresses quite accurately. Of particular significance
is the much improved prediction of transverse shear stresses at the
interface between the host substrate and the actuated layer directly

from constitutive equations, for which the existing ZIGT yields very
poor results. The prediction of deflection for the electric potential
load case by the present theory is also very accurate and superior to
the ZIGT.
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